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The identification of the actual outliers in a least-squares crystal-structure model

refinement and their subsequent elimination from the data set is a non-trivial

task that has to be carried out carefully when a high level of accuracy of the

estimates is required. One of the most suitable tools for detecting the influence

of each data entry on the regression is the identification of ‘leverage points’. On

the other hand, the recognition of the actual statistical outliers is effectively

possible by using some diagnostics as a function of the leverage, such as Cook’s

distance, DFFITS and FVARATIO. The evaluation of these estimators makes it

possible to achieve a reliable identification of the outliers and the elimination of

those that impair the least-squares fit. In this paper, a procedure for filtering

data points based on this kind of analysis for crystallographic X-ray data is

presented and discussed.

1. List of symbols and abbreviations

I: intensity of a reflection.

�: standard error associated with a reflection.

s.u: standard uncertainty.

a.d.p: atomic displacement parameters.

Fo, Fc: observed structure factor, calculated structure factor.

w: statistical weight of the least-squares refinement.

n: number of observations.

p: number of variables in the least-squares procedure.

y, ŷy: n-length vector of the observations, n-length vector of the

calculated reflections.

A: design matrix of the least-squares system.

W: weight matrix of the least-squares system.

x: vector of the solutions of the least-squares system.

H: projection matrix (hat matrix, leverage matrix) of the least-

squares system.

hi: ith diagonal element of the projection matrix.

Fp,n: Fisher’s distribution function with p and n degrees of

freedom.

GoF: goodness of fit.

R, Rw: crystallographic discrepancy factor, weighted crystal-

lographic discrepancy factor.

ei: residual error yi � ŷyi associated with the ith reflection.

s: estimated error variance.

s0i: estimated error variance when the ith row of A and y have

been deleted.

e�i : studentized deleted residual.

2. Introduction

Over the years, there has been great interest in the statistical

aspects of fitting procedures commonly used in crystal-

lographic practice (see for example the IUCr reports by

Schwarzenbach et al., 1989, 1995, and references therein). In

particular, customarily adopted fitting of the diffraction data is

a crucial process because of the intrinsic noise of experimental

data and its usual departure from Gaussian distribution, which

makes the crystallographic least-squares procedure a delicate

task when great precision of the results is required. A number

of critical articles can be found in the crystallographic litera-

ture regarding the algebra and the statistical control of

diffraction regression data (for example, Watkin, 1994; Harris

& Moss, 1992; Pannu & Read, 1996; Spagna & Camalli, 1999;

Lunin et al., 2002, and so on). We would also cite Kuntzinger et

al. (1998) here as their paper deals with the concepts and

statistical tools that are summarized and developed in the

present paper.

It is well known [see Prince & Boggs (1992) for a discussion

of the crystallographic case] that any attempt to fit an outlier

in an optimization procedure is a dangerous practice that may

affect the estimates of some other data points and the esti-

mates of some other model variables. Thus, a suitable identi-

fication of the actual outliers and their consequent elimination

(or their appropriate weighting) is a necessary procedure if we

are to obtain highly accurate estimations of the variables,

instead of an indiscriminate cutting of the reflections based on



the I/�(I) ratio, resolution etc., which, in most cases, only

improve the regression results cosmetically.

Reliable detection of the outliers might pass through the

calculation of each point’s ‘leverage’, i.e. the diagonal terms of

the so-called ‘hat matrix’ associated with the least-squares

system [in Belsey et al. (1980), a very extensive review on the

matter is presented], first introduced in crystallography by

Prince & Nicholson (1985). Leverage analysis itself is a good

means of detecting the most influential data points in the

regression. Indeed, this approach allowed, for example, Hazen

& Finger (1989), Merli et al. (2000, 2001) and Merli (2002) to

identify some classes of reflections that proved to be parti-

cularly influential in the estimation of some specific classes of

variables (site occupancies, a.d.p.’s and so on), suggesting the

best strategies for collecting and/or treating data in a rigorous

way. If the aim of statistical analysis is to detect dangerous

outliers of the least-squares procedure, leverage information

by itself is not sufficient if we are to identify aberrant data

because leverage only indicates the potentially influential data

points on the least-squares estimation. The identification of

outliers must be carried out by calculating any diagnostic as a

function both of leverage and of some measure of the resi-

duals. The aim of this paper is to check the reliability of a

filtering procedure based on leverage and its derived diag-

nostics for crystallographic model refinements.

3. Mathematical analysis

3.1. Theoretical basis

The reader can refer to Prince & Nicholson (1985) and to

Prince & Boggs (1992) for details regarding least-squares

algebra and leverage definition. Here, we can briefly recall

that, given a linear model y = Ax, the least-squares solution of

the system is given by x = (ATWA)�1ATWy. The so-called ‘hat

matrix’ is written as H = A(ATWA)�1ATW and the diagonal

elements 0 < hi < 1 of this matrix are defined as the leverage of

each ith data point. Note that H depends only on the model A

and the weights W, and not on the observations y.

In a crystallographic case, the refined model is not linear.

Nevertheless, it can be shown that the leverage analysis and,

consequently, each of the related diagnostics can be extended

for non-linear problems as well [see Belsey et al. (1980) for

further explanation]. Note that ŷy ¼ Hy, where ŷy is the vector

of the calculated reflections. As pointed out by Belsey et al.

(1980), the influence of the response value yi on the fit is most

directly reflected in its impact on the corresponding fitted

value ŷyi: this information is contained in hi. Therefore, data

with both high leverage and a discrepancy between the

observed and the calculated values may be considered as

being actual ‘outliers’ of the refinement, dangerous data points

that may affect the estimations of some variables owing to

their importance in the least-squares procedure. Moreover,

the diagonal element hi of the hat matrix represents the rate of

change in the calculated value of a data point resulting from a

change in the observed value: as a consequence, a number of

statistical criteria employed to forecast effects on the regres-

sion (i.e. the change in fit) when an observation is deleted are

functions of hi, as shown below.

3.2. Statistical criteria

Diagnostic techniques for discovering influential reflections

can be obtained by combining leverage and some (standar-

dized) measures of the discrepancy ei. Definitions of the

diagnostics used in this work (from Belsey et al., 1980) are

given in Appendix A.

When there are no outliers that can affect the efficiency of

the fit, both in terms of reproduction of the data and the

reliability of the estimates of the variables, COVRATIO and

FVARATIO will take similar values. The correct combination

of COVRATIO and FVARATIO results can lead to a safe

control of the data truncation, i.e. of the detection of the really

dangerous outliers, as shown below.

The values obtained from each diagnostic technique should

be interpreted with reference to some important considera-

tions. In general, any diagnostic measure should be based on

the choice of a suitable cut-off threshold. As far as the

leverage thresholds are concerned, with the assumption that

the variables of the refinement are Gaussian, it is straight-

forward to compute the exact distribution for either hi or some

of their functions.

As pointed out by Rao (1973), Wilks’s � statistics assume

that (n � p)/(p � 1){[1 � �(ai)]/�(a)i} ~ Fp�1,n�p, where ai is

the ith row of the design matrix and � is defined as

n/(n � 1)(1 � hi). It follows that (n � p)[hi � 1/n]/

(1 � hi)(p � 1) is distributed as F with p � 1 and n � p

degrees of freedom. For example, in large systems, 95%

percentile for F distribution is less than 2, so 2p/n is a rough

cut-off threshold to determine if hi is an actual ‘leverage point’

of the refinement (note that p/n, the average leverage, corre-

sponds to the perfectly balanced least-squares system).

As mentioned above, these diagnostics combine with

information regarding the influence (represented by the

leverage) of the data point and some measures of the (stan-

dardized) residual: if scaled by an appropriate standard error,

all of these diagnostic tools can be considered as being large if

their value is greater than 2 (‘absolute cut-off’). For practical

reasons, it is useful to deal with cut-offs that represent the

influence on the fitting regardless of sample size: Belsey et al.

(1980) call them ‘size-adjusted’ cut-offs and, for the diagnostic

estimators used in this work, size-adjusted cut-offs have been

calculated following Rao’s (1973) assumption.

The greater the Gaussian character of the distributions of

the residuals, the more effective the cut-offs are. This

assumption is far from being satisfied when dealing with

crystallographic data: for instance, the use of weighting

schemes that are assessed so as to ensure the goodness of fit

(hereafter GoF, defined as {
P

[w(Fo � Fc)
2]/(n � p)}1/2) close

to unity can influence the diagnostics. Nevertheless, such

approximate diagnostics may still be useful in the actual

identification of outliers, as shown in the simulations described

below.
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3.3. Limits for the diagnostics

Once the outliers have been detected by means of one of

the above diagnostics, it should be noted that their simul-

taneous elimination could involve, in certain cases, a loss of

some reflections that are not actual outliers of the fit. This is

possible because the high level of influence of the extreme

outliers on the refinement can cause a misleading identifica-

tion of ‘minor’ outliers, which only seem to be leverage points.

These data will no longer be identified as outliers when the

‘true’ outliers are eliminated from the data set. Besides, it may

be possible that the outliers found do not constitute all or the

only true outliers (this effect has been observed in some cases

tested in the present work). It is possible that the simultaneous

identification of all outliers and only the ‘true’ outliers may be

feasible if diagnostic estimators of a higher order (for example,

Cook’s statistics of 2, 3, . . . , kth rank) are employed. Other

effective methods have been described by, for example, Seaver

et al. (1990) and Gray & Ling (1984) but such methods are not

easily applicable to crystallographic problems. Moreover, any

feasible diagnostics that take the joint influence of the

reflections into account [for instance, MDFFIT as described by

Belsey et al. (1980)] are too expensive in terms of CPU time

because of the great size of the design matrices generally

involved in crystallographic least-squares computations. Thus,

in this paper, rather than considering the possibility of ‘legit-

imate’ simultaneous detection of the actual set of outliers, we

have focused on the identification of an improvement in

crystal-structure least-squares modelling by means of iterative

identification and elimination of one outlier at a time.

4. The experiments: results and discussion

Two main crystal structure typologies have been considered:

an inorganic structure, CaTiO3 perovskite (data collected at

our laboratory, which are unpublished) and two organic

samples, loganin (see the documentation of SIR2002, Burla et

al., 2003) and oxalic acid dihydrate (see the documentation of

XD, Koritsanszky et al., 1995).

The process was the same for all structures: after obtaining

a reliable structure refinement of the sample, a synthetic data

set was calculated on the basis of the model obtained by fitting

the experimental data. A random noise, calculated as e =

(0.5 � r)|y|/10 (where r is a random number 0 < r < 1), was

added to the theoretical structure factors.

The use of synthetic data is justified by the need to test data

sets with outliers arising only from experimental bias, with the

assumption that the model used is the correct one, i.e. it is able

to reproduce the data perfectly. Further investigations into the

possibility of detecting an outlier from an imperfection of the

model will be presented elsewhere.

In order to obtain outliers, an extra error was added to some

of the reflections of the synthetic data sets (chosen from

among the potentially most influential data, i.e. the highest

leverage reflections). In particular, the strongest high-leverage

intensities were lowered by a maximum of 10% and the

weakest high-leverage intensities were increased by a

maximum of 10% to emulate two negative effects commonly

observed in X-ray single-crystal crystallography such as

secondary extinction and the Renninger effect: ten reflections

were modified in the perovskite data set (Table 1) and five

reflections were modified in both of the organic structures

(Tables 2 and 3).

The full-matrix refinements on |Fo| were then made by

eliminating the most aberrant outlier each time.

In all cases, spherically averaged scattering factors for all

the atoms and harmonic second-order thermal tensors were

used. The calculation of leverage and the diagnostic measures

listed above were performed only after convergence was

achieved (mean shift/s.u. < 0.0001).

The criteria followed step by step during the filtering

procedure can be summarized as follows:

1. the largest value for |DFFITS| (or alternatively for Cook’s

distance) represents the most aberrant outlier;

2. COVRATIO values <1 indicate a reflection that can

potentially improve the efficiency of the fitting after its elim-

ination; COVRATIO values >1 represent potentially influ-

ential reflections; aberrant reflections should lie outside the
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Table 1
‘True’ reflections and modified values introduced in the perovskite data
set (absolute scale).

h k l Calculated F2
o Leverage Modified F2

o

2 0 2 19314 (20) 0.0904 18500
0 4 0 20545 (210) 0.1091 18500
1 2 1 9858 (31) 0.0489 9100
0 0 4 8576 (29) 0.0609 7750
0 4 2 7396 (20) 0.0440 6950
0 0 2 9687 (20) 0.0563 9000
0 14 0 33 (4) 0.0605 50
2 14 0 58 (4) 0.0492 70
1 16 1 65 (9) 0.0406 80
0 14 2 58 (17) 0.0451 100

Table 2
‘True’ reflections and modified values introduced in the loganin data set
(absolute scale).

h k l Calculated F2
o Leverage Modified F2

o

2 0 0 11147 (231) 0.3854 9135
4 1 0 839 (10) 0.3250 625
0 4 0 8753 (58) 0.4232 8475
2 13 1 361 (21) 0.0844 675
�77 1 2 293 (9) 0.1158 576

Table 3
‘True’ reflections and modified values introduced in the oxalic acid data
set (absolute scale).

h k l Calculated F2
o Leverage Modified F2

o

1 0 3 839 (15) 0.3020 790
1 0 �55 1711 (10) 0.2892 1660
2 0 0 643 (3) 0.2726 630
1 1 �33 427 (2) 0.2205 410
3 0 �33 400 (2) 0.2849 380



range limited by the fixed thresholds, as described in

Appendix A;

3. a FVARATIO value that is too far from its threshold

indicates an outlier whose elimination can improve the

refinement, while a FVARATIO value that is close to unity

indicates that the refinement is insensitive (or even detri-

mental to the quality of the estimates) with respect to the

elimination of the outlier reflection.

It should be noted that, in all of the cases tested, this proce-

dure was able to detect all the artificially introduced outliers.

The results of each refinement were evaluated by a measure

of the discrepancy of all the atomic coordinates of the struc-

ture compared with those of the reference model (i.e. the

refinement on theoretical data with added noise) such asP
j jx

true
j � xcalc

j j=p (where xtrue
j is the value of the jth atomic

coordinate of the reference model and xcalc
j is the value of the

jth atomic coordinates of the refinement of the model based

on data containing outliers), together with an analysis of the

behaviour of the estimate of some selected variables for each

case. The history of the iterative elimination of outliers carried

out using the above-mentioned statistics (i.e. the list of

reflections with aberrant |DFFITS|, COVRATIO and

FVARATIO found at each cycle) has been deposited.1

4.1. The case of the CaTiO3 perovskite

The experimental X-ray data set of CaTiO3 consists of 1737

unique reflections from an orthorhombic crystal [space group

Pnma, a = 5.4473 (1), b = 7.6477 (1), c = 5.3825 (1) Å]. Initial

crystal-structure refinement on |Fo| was carried out using a

locally modified version of the program XD (Koritsanszky et

al., 1995), using all the reflections up to a reciprocal resolution

of [sin(�)/�]max = 1.22 Å�1. The refinement of the model using

a theoretical data set with added noise gave final R = 0.0058,

Rw = 0.0086, GoF = 1.012.

In Table 1, the indices of the reflections, their original

intensities and the new values are reported for perovskite,

together with the leverage calculated before altering the data.

In the present case, suitable thresholds for COVRATIO are

0.95 and 1.05, and 1.04 for FVARATIO. The thresholds for

Cook’s distance and |DFFITS| are 0.024 and 0.19, respectively:

the reflections showing a |DFFITS| value >0.19 and a

COVRATIO value outside the range limited by the thresholds

are thus recognized as outliers that can affect the results.

|DFFITS| and Cook’s distance showed the same behaviour in

this case.

Fig. 1 shows |DFFITS| values against the leverage for the

inorganic sample. As can be seen, all of the artificially intro-

duced outliers can be recognized when a comparison is made

with the thresholds. In this case, all of them have been

detected in the first run. In other runs for this structure using

different weights, only the strongest artificially modified

reflections were recognized as outliers by the estimator,

though a number of ‘apparent’ outliers (for instance, 200, 123,

242), which are still strong reflections, were also found.

Moreover, in certain cases the weakest reflections are not

recognized as outliers by DFFITS in the first run. This beha-

viour strongly depends, for instance, on the weighting scheme

introduced, since design matrix, variance estimation and

outlier diagnostics depend on weights. Moreover, results are

obviously influenced by the amount of noise added, by the

criterion for choosing the reflection, by the discrepancy

between theoretical and modified values and so on. In all of

the cases tested for this work, the simultaneous deletion of

outliers yielded results that were practically identical to those

obtained by iterative elimination of the aberrant reflections.

However, this behaviour is probably due to both the nature

of synthetic data and the low number of artificial outliers

introduced. Therefore, caution in simultaneously eliminating

outliers is strongly recommended when dealing with experi-

mental data, since the person carrying out the experiment has

no a priori knowledge about the behaviour of the system

under study.

The iterative elimination of reflections 040, 004, 202, 121,

002, 042, 001402 and 201400 always exhibits the presence of

outliers with COVRATIO significantly outside the range

limited by cut-offs and FVARATIO > 1.05, whereas the

outliers reflection 101601 cannot be considered as an ‘extreme’
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Figure 1
|DFFITS| versus leverage for CaTiO3 perovskite. Dotted line = leverage
cut-off; dashed line = |DFFITS| cut-off.

Figure 2P
j jx

true
j � xcalc

j j=p for CaTiO3 perovskite. The number of outliers present
in the data set is indicated on the abscissa.

1 Output of leverage analysis for perovskite, loganin and oxalic acid are
available from the IUCr electronic archives (Reference: SH5030). Services for
accessing these data are given at the back of the journal.



outlier, as was the case with the former, since it never exhibits

aberrant COVRATIO/FVARATIO values. The elimination of

outliers can be stopped once FVARATIO is close to the fixed

threshold. Further elimination is worthless and could even be

unwise in certain cases.

In Fig. 2, the overall estimator of the discrepancy between

the coordinates is plotted for the 10 outliers in the first run in

the data set, and for runs ii–xi) after removing the highest

outlier (040, 004, 202, 121, 002, 042, 001402, 001400, 201400, 101601,

respectively).

As can be noticed, there is a significant improvement in the

estimates after deleting the outliers one at a time, in terms of

the correctness of the model. Cases (i) to (vi) refer to the

strongest aberrant reflection and cases (vii) to (xi) refer to the

elimination of the weakest outlier reflections.

In the perovskite case, COVRATIO ranges from 0.400 to

0.945 for the outlier reflections, whereas all of the other values

are really close to unity. Such statistics allow us to explain

other features of the results, as will be described in the

following paragraph.

Fig. 3 depicts the values of U11 for the Ti atom. As can be

seen, there is an improvement of the estimate of this variable

in comparison with the reference model after each iterative

elimination of the most aberrant reflection, as indicated by the

diagnostics [cases (i) to (vi)]. At the same time, however, the

elimination of the weakest outlier reflections does not

improve the results [cases (vii) to (xi)]. Similar considerations

can be made in the case of an atomic coordinate, i.e. the z

coordinate of Ca (Fig. 4).

In our experience, in inorganic structure refinements (with a

spherical-atom model), the most significant improvement of

the estimates, using the diagnostics described above, is for the

thermal parameters, owing to the systematically higher

leverage of most of the reflections on this kind of variable

(Merli et al., 2000).

4.2. The case of loganin

For the loganin structure, the initial crystal structure

refinement on |Fo| up to a reciprocal resolution of

[sin(�)/�]max = 0.67 Å�1 was carried out on 3498 unique

reflections for 340 variables. After adding noise to the theo-

retical structure factors as described above, the refinement

gave final R = 0.0623, Rw = 0.0969, GoF = 1.009.

Suitable cut-offs for this structure were 0.35 for DFFITS,

0.72 and 1.38 for low and high COVRATIO cut-offs, respec-

tively, and 1.20 for FVARATIO.

The history of the iterative elimination has been deposited.

After eliminating reflection 410, there were no more reflec-

tions with FVARATIO > 1.20. Therefore, any further elim-

ination of reflections was not necessary in terms of overall
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Figure 3
U11 (Å2) of Ti in CaTiO3 perovskite. Dashed line = value of the variable in
the model obtained from data with added noise and no outliers present;
labels on abscissa as in Fig. 2.

Figure 5P
j jx

true
j � xcalc

j j=p for loganin versus the number of outliers in the data
set.

Figure 6
x fractional coordinate of O(1) in loganin. Dashed line = value of the
variable in the model obtained from data with added noise and no
outliers present; labels on abscissa as in Fig. 5.

Figure 4
z fractional coordinate of Ca in CaTiO3 perovskite. Dashed line = value
of the variable in the model obtained from data with added noise and no
outliers present; labels on abscissa as in Fig. 2.



improvement of the refinement and could even have slightly

impaired some variables.

Similarly to the perovskite case, these results can be

visualized in terms of the mean coordinate error (Fig. 5) and

with respect to each estimate [as an example, the x fractional

coordinate of O(1) is plotted in Fig. 6] in comparison with

individual iterative elimination of 040, 200, 410, �7712 and 201301,

respectively. As can be seen, the overall departure from the

reference model gradually decreases after the elimination of

the outliers, as evidenced by the estimate of the x coordinate

of O(1) plotted in Fig. 6.

4.3. The case of oxalic acid dihydrate

In the last test, the oxalic acid dihydrate structure is

presented (see XD documentation for further details on the

structure). In this case, 3 scale factors were refined for 3

subsets of reflections. The initial crystal-structure refinement

was carried out on 3498 experimental unique reflections, up to

a reciprocal resolution of [sin(�)/�]max = 0.99 Å�1 for 66

variables.

After adding noise to the theoretical structure factors as

described above, the structure refinement gave final R =

0.0131, Rw = 0.0146, GoF = 1.088. Up to 5 reflections with

medium–high leverage were altered within a range of �10%

as indicated in Table 3. Thresholds for the diagnostics were

0.25 for |DFFITS|, 0.89 and 1.12 for low and high COVRATIO

cut-offs, and 1.08 for FVARATIO.

The results of the iterative leverage analysis, following the

removal sequence 103, 10�55, 200, 11�33 and 30�33, has been

deposited. Even in this case, FVARATIO is the diagnostic tool

that can reliably indicate the outliers that are capable of

impairing the estimates. It is worth saying that, for this

structure, there is no outlier reflection with COVRATIO < 1,

i.e. there are no reflections for which the results are definitely

improved after their elimination: given the noise added to this

data set, in this structure, all of the reflections have more or

less equal influence on the estimates. After the elimination of

the 30�33 reflection, the leverage analysis does not indicate

further dangerous outliers. Figs. 7 and 8, as well as the previous

cases, show the improvement of the refinement by means of

the recognition and subsequent elimination of these outliers.

5. Conclusions

It should be remembered that the simulations presented here

represent only ‘ideal’ cases with just a few aberrant reflections.

Besides, the ‘minor outliers’ introduced in the data sets can

only affect the results within the statistical fluctuations, so the

presented examples only represent a further exploratory

investigation into the subject. In common practice, experi-

mental data sets are affected by a greater number of aberrant

reflections and the disparity between observed and calculated

data should be ascribed either to experimental bias or to the

model’s incongruity, or to both. Further studies about these

facts need to be carried out, alongside tests of other diagnostic

tools. Nevertheless, it could be stated that the elimination of

the outliers of a crystal-structure refinement is a strongly

recommended procedure that can improve the reliability of

results, where both data fitting and the precision and accuracy

of the estimated variables are concerned.

This task has to be accomplished using several sets of

statistics, all of them based on leverage. A promising algorithm

to detect the outliers one at a time could be the following one.

1. Detect the outliers by means of distance measures, such

as Cook’s distance or |DFFITS|, provided that there are

suitable ‘size-adjusted’ thresholds.

2. Pick the reflection with the highest Cook’s distance or

|DFFITS| as the extreme outlier and check for its FVARATIO

values by comparing it to the appropriate thresholds.

3. Delete the reflection if FVARATIO is significantly

distant from the threshold. In the presence of a large number

of outlier reflections, a simultaneous elimination of them can

be roughly adopted when very large values of |DFFITS| or

Cook’s distance are observed. In strongly biased experimental

data, the elimination of an ‘untrue’ outlier is likely to bias the

estimates in a negligible way.

4. Continue until all of the diagnostic tools lie within the

fixed thresholds.

These procedures should be carried out routinely to improve

the results of refinement, thus avoiding indiscriminate trun-

cation of data and empirical protocols that are not cor-

roborated by the statistics.
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Figure 8
U22 (Å2) of O(1) in oxalic acid. Dashed line = value of the variable in the
model obtained from data with added noise and no outliers present;
labels on abscissa as in Fig. 7.

Figure 7P
j jx

true
j � xcalc

j j=p for oxalic acid versus the number of outliers in the data
set.



APPENDIX A
Diagnostic criteria: formulae and thresholds

The reader can refer to Belsey et al. (1980) for a further

explanation of the expressions reported here.

A way of summarizing coefficient changes and changes in fit

when an observation is deleted is given by

DFFITi ¼
hiei

ð1� hiÞ
:

In this work, a measure of DFFIT scaled by sh
1=2
i has been

adopted, as defined below:

DFFITSi ¼
hi

1� hi

� �1=2
ei

s0ið1� hiÞ
1=2
:

A suitable adjustable threshold for DFFITS can be

Fp�1,n�p(p/n)1/2.

Note that an equivalent expression for DFFITS is given by

DFFITSi ¼ je
�
i j

hi

1� hi

� �1=2

;

where e�i is the studentized deleted residual, defined as

e�i ¼
ei

s0ið1� hiÞ
1=2
:

Cook (1977, 1979) proposed a measure of the distance

between the observed and the calculated points given by

Di ¼
ðx0i � xÞTATAðx0i � xÞ

ps2
¼

1

p

e2
i

s2ð1� hiÞ

hi

ð1� hiÞ
;

where x0i is the least-squares estimate of x computed without

the ith case and s2 = eTe/(n � p) is the usual estimate of the

variance which can alternatively be substituted by the deleted

s0i, as used before. Thus, Di can be considered as the standar-

dized squared distance between the parameter estimate x and

the parameter estimate x0i when the ith case is removed. The

threshold used in this work for Cook’s distance is

Fp�1,n�p(p/n).

It should be noted that, in the crystal structure refinement

code MOLLY (Hansen & Coppens, 1978), the calculation of

DFFITS and Cook’s distance has been implemented (Kunt-

zinger et al., 1998).

A measure of the ratio between the variance–covariance

matrix when the ith row has been deleted and the covariance

matrix using all the data (further explanations can be found in

Belsey et al., 1980) is represented by the following criterion:

COVRATIOi ¼
1

n�p�1
n�p þ

e�2
i

n�p

h ip

ð1� hiÞ

or, alternatively, by

FVARATIOi ¼
ðs0iÞ

2

s2ð1� hiÞ
;

which is related to COVRATIO since

FVARATIO ¼
COVRATIO

ð1� hiÞ

� �1=p

ð1� hiÞ:

COVRATIO can range in the interval

1=½1þ 3=ðn� pÞ�pð1� 2p=nÞ to 1=½1þ 3=ðn� pÞ�p, thus

reflections with values outside this interval should be consid-

ered as outliers. For large systems, the low and high cut-offs for

COVRATIO can be approximated as 1 � 3p/n and 1 + 3p/n,

respectively, while FVARATIO can range in the interval

1 � 3/n to 1 + (2p + 3)/n.
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